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trained on six experimental parameter setups to form 216 models. The performances of these models are evaluated on two real 
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1. Introduction 

With an increase in information the weblogs, it is important to segregate relevant and irrelevant information. Web 
Navigation Prediction [13] [14] is the problem to find an interesting and relevant pattern from user navigated 
patterns. This problem is large and complex as web navigations are huge and varied. Every user navigation has 
different labels so problem of handling multiple classes arises. Therefore, multi-class handling models are required 
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to predict user desired information. Deep Learning Neural Networks [15] have the ability to classify large data with 
multiple classes efficiently. 

 
  

(a) Neural Network (b) Multi-Layer Perceptron (c) Long-Short Term Memory 
            
       Input Unit             Hidden Unit                 Feedback Input Unit              Feedback with                    Output  
                                                                                                                                     Memory Unit                       Unit 

Fig1. Basic architecture of Neural Network and Deep learning Neural Networks 

Early neural networks could simulate only a very limited number of neurons at once, so patterns of great complexity 
could not be recognized. These networks languished through the 1970s. In the mid-1980s, Hinton and others helped 
spark a revival of interest in neural networks with so-called “deep” models; model with multiple layers of neurons. 
Thus, the advance neural network has been introduced. To empower the prediction ability of the networks, multiple 
layers have been added; the resultant model is known as Deep learning model.  This paper uses Neural Networks 
(NNs) [12] and its higher variants because NNs have the ability to learn and model non-linear and complex 
relations. It is inspired by the human brain. These networks are trained to learn and adapt themselves according to 
the need. Moreover, they have the ability to generate predictions for unseen data. After learning input data and their 
relationships, it can generate predictions for unseen data.  

Broadly, Deep Neural Networks are classified into two categories: Feed Forward and Feed Backward (or recurrent) 
neural networks. Feedforward neural network passes the information through successive layers without feedback 
loops. There are three layers in the basic neural network such as input layer, hidden layer, and output layer. The 
architecture of the neural network is shown in Fig.1 (a). Feedforward neural networks use a set of neurons to 
transmit data in the form of input and output values. Feedforward neural networks are used to transfer data by using 
networks or connections. Adding more hidden layers form a new version of the neural network known as Multi-
Layer Perceptron (MLP) [10]. MLP with two hidden layers is shown in Fig. 1(b). Adding multiple layers into a 
network is known as deep learning. In Feedback or Recurrent neural networks, signals can be transmitted in both 
directions through network loops. Recurrent networks are powerful and extremely complicated. Computations 
derived from the input are feedback to the network. This is like a memory present at every neuron.  These are 
dynamic in nature: their states are changing continuously until an equilibrium state is reached. Generally, for 
complex and large data, Recurrent Neural Network (RNN) is used. RNN learn short term sequences while LSTM 
has the ability to learn for both long and short term sequences. LSTM [1] architecture is presented in Fig. 1(c).  

This paper analyze the performance of Models like Neural Network (NN) , Multiplayer Perceptron (MLP) and Long 
Short term Memory (LSTM) for Web Navigation Prediction. There are several important parameters which require 
adjustments for modeling these models like number of hidden units, activation function, optimization function, 
learning rate, number of epochs and batch size as they all have different range of values. In past studies, NN [17] has 
been applied for web navigation prediction on a single set of parameter configuration. In this paper varied 
parameters configurations for NN has been analysed to identify the best combination. In addition, performance of 
Deep learning models like MLP and LSTM have been analysed for Web Navigation Prediction by varying the 
parameter values. This paper also compares NN, MLP and LSTM for all varied set of parameters on a common 
platform to find the best model for predicting user navigation behaviour on web.     



	 Honey Jindal  et al. / Procedia Computer Science 167 (2020) 1739–1748� 1741
 Author name / Procedia Computer Science 00 (2019) 000–000 3 

1.1. Research Contributions 

The main contributions of this paper are given as follows: 
 

1) The paper reports the best parameter configuration for Web Navigation Prediction. The six parameters 
that have been configured are number of hidden units, activation function, optimization function, 
learning rate, number of epochs and batch size.  

2) The paper conducted exhaustive comparison among Deep Learning networks (MLP and LSTM) and the 
basic Neural Network by varying the parameter configurations. Six parameter combinations have been 
chosen to form six different experimental setups. Each model is trained on these setups. These setup 
forms 6*6*3*2 =216 models where the first six denotes the number of setups, second six denotes N-
Grams, three represents the models used and two denotes the datasets.  

3) The performance of Deep learning networks for web navigation prediction problem has been analyzed 
on two real datasets BMS and CTI. 

4) The paper reports the best model among Neural Network, Multilayer Perceptron, and Long Short Term 
Memory. 

The rest of the paper is organized as follows. Section 2 presents the related work. Section 3 describes the parameters 
and challenges faced for tuning the network. Section 4 presents the experimental results and discussion. Finally, 
Section 5 concludes the paper. 

 
2. Related Work 
 
The web navigation prediction system classifies user navigated pattern into multiple classes. In past, several 
machine learning models have been used for this problem. Herein, multi-class classifiers would be suitable as there 
is large number of classes involved in the web.  Deep Learning Neural Networks [15] have the ability to classify 
large data with multiple classes efficiently. In past work, NN [17] has been used for web navigation prediction on a 
specific set of parameters. The importance of using those parameter values was not highlighted in the paper. The 
recent studies on Deep Leaning Models have been used sequence mining in varied applications like speech 
recognition [18], character recognition [19], handwriting recognition [18] and polyphonic music modelling [18]. 
Deep learning models were designed to address big problems and it remains unexplored in the web navigation 
prediction area. Therefore, this paper analyse Deep Learning models like multilayer Perceptron and Long short 
Term Memory. The paper also investigated the best parameter combinations for these models for Web Navigation 
Prediction. 

 
3. Neural Network Parameters   

In this section, some important parameters and their possible values are used for building the models. The 
parameters used are number of hidden units, number of layers, activation function, optimization function, learning 
rate, number of epochs and batch size. The parameters and their possible values are presented in Table 1. This 
section also explains the strategy that is required to apply while tuning up parameters for Web Navigation 
Prediction.  
• Number of Hidden Units and layers: Hidden units are the number of neurons in the hidden layer. The selection 

of the optimal number of units in the hidden layer is very important because it impacts the model performance. 
Generally, too few hidden units will leave high training errors due to under-fitting. Too many hidden units will 
result in low training errors due to over-fitting.  It will make the training unnecessarily slow, and will often 
result in poor generalization. The size of hidden units depends upon the number of input training examples. 
Hidden layers varies from one to many but for some big applications like distributed systems, cloud computing 
and image processing more hidden layers are required.  Few rules of thumb were defined in [11] for selecting 
hidden layers.  
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• Activation Function: This is an important parameter of the neural network. Activation function determines the 
active state of the neuron. It decides whether the information received by the neuron is relevant or not. It 
transforms the input signal into the non-linear form and sent to the next layer as an input. The activation 
function is computed as,  

                                        𝑌𝑌 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (∑(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 ∗ 𝑋𝑋) + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)                                                              (1) 
                                                        where X is the input, weight is the random value of the connection between input  
               neuron to next layer neuron, bias is an extra neuron added to the pre-output layer with value 1. 
 

Table 1: Parameters and their possible values 
Parameters Possible Values 

Number of Hidden Units Varies with application 

Number of Layers Varies with application 

Activation Function Binary Step Function, Linear Function, Sigmoid, Tanh, Relu, Softmax 

Optimization Function Stochastic Gradient Descent, Nesterov accelerated gradient, Adagrad, RMSProp, AdaDelta, 
Adam 

Learning Rate 0.1, 0.001, 0.0001 

Number of Epochs Varies with application 

Batch Size 1, 16, 32, 64 

Loss Mean absolute error, Binary cross entropy, Categorial cross entropy 

  
 
The activation functions used in designing neural networks are Binary Step Function, Linear Function, Sigmoid, 
Tanh, Relu, Softmax. The binary step function is extremely simple and used for developing a binary classifier. It is 
not suitable for handling multi-class problems. A linear function is used to activate multiple neurons at the same 
time. For multi-class, the maximum value can be chosen. The issue of a linear function is that its derivative is 
constant which means for every back propagation the gradient will remain the same and the network weights will 
also remains the same. Due to this, it is suitable for simpler problems not for complex problems. Another variant is a 
sigmoid activation function. It is widely used for smooth and continuously differentiable function. Using this, a 
small change in the input value X will bring large changes in output Y. The function ranges from 0-1 with S-shaped 
curve. It works well with back propagation, the error can be propagated and the weights are updated accordingly. 
Despite their advantages, its value becomes flat at +X and –X regions. This means that gradient value becomes 
almost zero and the network did not learn. Another issue with this is that its value ranges from 0 to 1 i.e., it is not 
symmetric around the origin. The values going next neuron are also the same which is not desirable. This issue is 
addressed by tanh function. It scales the sigmoid function. Tanh function is asymmetric at the origin. Its value 
ranges from -1 to 1. Similar to the sigmoid function, it has a vanishing gradient problem. Relu is the Rectified 
Linear unit function. The main advantage of Relu activation function is that it does not activate all the neuron at the 
same time i.e., a neuron with a negative value will convert into zero or gets deactivated. It makes network sparse and 
computationally efficient. At the negative side of the graph, its gradient value becomes zero. It implies, during 
backpropagation, neurons become dead and never gets activated. Softmax is an extension of the sigmoid function 
used for handling multi-class problems. It maps the output value from 0 to 1. It is ideally used in the output layer of 
the classifier. There is no thumb rule available for choosing the activation function. The properties of the problem 
might be able to make a better choice for quick convergence network. Based on the above discussion some 
properties are listed in [9]. We choose Relu and softmax activation function in our investigations.   

 
• Optimization:  Optimization is a process which tried to reduce the network error.  This plays a crucial role in 

improving the accuracy of the model. The variants of optimizer are Stochastic Gradient Descent (SGD), 
Nesterov accelerated gradient, Adagrad, RMSProp, AdaDelta, Adam.  SGD is an incremental gradient descent 
algorithm which tries to find a minimum error via iterations [8]. In each iteration, models generate predictions 
and compare the predictions with expected outcomes. The difference in predicted value and the real outcome is 
known as error. This error is used to update network weights and internal model parameters. This updating 
procedure is followed by the backpropagation algorithm. It does not work well with low learning rate as it 
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slowed down the learning of the model and high learning rate as it might lead to the oscillations [8]. Moreover, 
SGD has a hard time escaping the saddle points. To handle saddle points, Adagrad, Adadelta, RMSprop, and 
ADAM generally preferred. Nesterov accelerated gradient is used to update gradient to the slop and speed up 
the SGD. AdaGrad performs better than Nesterov accelerated gradient as it performs larger updates for 
infrequent parameters and smaller updates for the frequent parameters. This, in turn, increases speed, 
scalability, and robustness of SGD. It is used to train large neural networks. However, the main disadvantage of 
AdaGrad optimizer is that it makes the learning rate infinitesimally small which degrades model learning ability 
[8]. To resolve the issue of AdaGrad, two optimizers were developed independently RMSProp and AdaDelta. 
AdaDelta and RMSProp work similarly but the only difference in Adadelta is that it does not require an initial 
learning rate constant to start with. Adam is another variant of optimizers which combines good properties of 
Adadelta and RMSprop. It computes the learning rate for each parameter. Generally, Adam was found to be a 
good choice as it outperforms RMSProp and Adadelta[7]. Therefore, in this paper, we have chosen Adam and 
SGD as the optimizers. 

• Learning Rate: The learning rate is one of the most important parameter which is used to tune the models. It 
minimizes the error by updating network weights. Choosing too low learning rate and too high learning rate 
would degrade model performance.  The low learning rate will make tiny updates in the network weights and 
slow down the training process while too high learning rate will cause divergent behavior in the error. In 
practice, the training should start with high learning rate because in the starting point, random weights are far 
from optimal and learning rates will fine-grained the network weights by decreasing its value during training. 
The learning procedure might start with large value i.e., 0.1 and then for the lower values like 0.01, 0.001, etc. 

• Number of epochs: The number of epochs denotes the number of passes through the training dataset. Each 
epoch implies that the training sample can update the model internal parameters. It may have one or more 
batches. The number of epochs can vary from zero to infinity. Generally, a large number of epochs, hundreds or 
thousands are chosen. This allows the network to reduce the error sufficiently. To choose optimal epoch value, 
a developer must check the learning curves of error and accuracy. These curves can help to diagnose the 
learning states of the model i.e., over-learned, under-learned or suitably fit for training.  

• Batch size: Batch size is a number of training examples passed to the networks. A training dataset can be 
divided into one or more batches. When all training examples are passed as a single batch then the learning 
algorithm is known as batch gradient descent [3]. When batch size is one then the learning algorithm is known 
as stochastic gradient descent [3]. When the batch size is more than one and less than the training size, the 
learning algorithm is called mini-batch gradient descent [3]. In mini-batch gradient descent, 32, 64 and 128 
batch size is more popular [5]. The increase in batch size improves network accuracy [4]. The batch size ranges 
in between 1 to 1024 with a power of 2. Some important factors to choose mini batch sizes are given in [6].  
Nitish Shirish K. et. al [16] has observed that larger batch size degrades the quality of model as it tends to 
converge to sharp minimizers of the training function. The batch size selection varies with application, after 
multiple investigations we found two suitable batch size values for WNP as 1 and 64. 

 
In the following section, we will summaries the best parameter value chosen and discuss the experimental results 
obtained on deep learning neural networks.  
 
4. Results and Discussion 

 
The experiments were carried on GTX 1050 GPU with i5-7400 processor at 3.00 GHz. The system has x64-ased 
processor with 8.00 GB RAM.  The models were trained using Python programming language in Keras 
environment. The models were evaluated using Tensorflow diagrams. The models were validated using parameters: 
number of hidden units, number of layers, activation function, optimization function, learning rate, number of 
epochs and batch size. This section describes the different parameter setups, Real web browsing data sets and 
experimental results of Neural Network, Deep Learning Networks (Multi layer Perceptron and Long Short Term 
Memory) on N-grams where N varies from 1 to 6.  
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4.1 Deep Learning Models and their Parameters 

In this section, we present empirical results of neural network(s) and deep learning networks over web navigation 
prediction datasets. The networks used in the study are Neural Network (NN), Multi-Perceptron Layer (MLP) and 
Long-Short Term Memory (LSTM). In the neural network, passing whole dataset as an input is not enough [6] to 
build a successful network. Generally, we need to pass the whole dataset multiple times in the same neural network 
in order to optimize network weights.  In addition, the performance of the neural network may vary with the dataset 
used. The dataset may have under-fitted, over-fitted or will have optimal learning curve [2]. Therefore, the correct 
choice of network parameters is required for developing a model. This study analyses model performance using 
different combinations of parameters- loss, optimizer, activation function, learning rates, batch size, number of 
epochs.It has been found in the past that through learning rates 0.0005, 0.001, 0.00146 networks converges faster 
than other learning rates [6]. Using the learning rate above 0.001 [6] increases the training time and also increases 
the variance of the training time. Therefore, we initiate investigations with the learning rate of 0.001. To conduct 
experiments we use categorical_crossentropy loss, Adam and SGD optimizers, Relu and softmax activation 
functions, 1 and 64 batch size. We conduct an experiment on 20 epochs to analyze the nature of neural networks. 

Table 2 Neural Networks Setup 
Setup Loss Function Optimizer Activation Function Learning rate Drop Out Batch Size Output Layer 

1 Categorical Cross 
entropy  

Adam Relu 0.001 True 64 Softmax 
 
 

2 Categorical Cross 
entropy 

Adam Relu 0.001 True 1 Softmax 

3 Categorical Cross 
entropy 

SGD Relu 0.001 True 64 Softmax 

4 Categorical Cross 
entropy 

SGD Relu 0.001 True 1 Softmax 

5 Categorical Cross 
entropy 

SGD Softmax 0.001 True 64 Softmax 

6 Categorical Cross 
entropy 

SGD Softmax 0.001 True 1 Softmax 

Six parameter combination setups have been used in the paper which is shown in Table 2. The experiments were 
carried over two web navigation datasets: BMS and CTI. These datasets have user navigation sessions of varied 
length. For simplicity, N-Gram sliding window concept has been used to generate the training and testing sessions. 
There are 216 models formed from these setups. Sections describe the performance of models formed. 
 

4.2 Datasets 

The performance of deep learning neural networks is evaluated on two real datasets, BMS and CTI.  

• BMS WebView1: This dataset is recorded from an e-commerce website, Gazelle.com. The dataset was used 
in the KDD Cup 2000 competition. It contains 59,601 sessions and contains 497 distinct items or web 
pages. 

• CTI Dataset: This dataset contains pre-processed navigations derived from the CTI University website. 
The data are collected during the two weeks of April 2002. The processed data contains 13745 sessions and 
683 web pages. The dataset consists of 16-page categories and each category is labeled as numeric value 
i.e., 1 for search, 2 for the program and so on. 
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The details of the datasets used are summarized in Table 3. 
 

Table 3: Dataset Summary 
Datasets Source Year Sessions Web Pages 

BMS WebView1  www.gazelle.com  

 

2000 59601 497 

CTI www.cs.depaul.edu  

 

2002 13745 683 

 
4.3 Results 

In this section, we present the experimental results of Deep Learning neural networks over varied parameters 
combination. Overall six setups and 216 models have been formed using these combinations.   
 
Table 4(A-F) presents prediction accuracy and validation loss of each model varying with N-Grams. It has been 
observed from Table 4(A-E) that LSTM is performing superior to Feed forward models, MLP and NN on both 
datasets. The improvement has been noticed in prediction accuracy with minimal loss. For Setup 3 and 4, the 
results are shown in Table 4 (C-D), it can be observed clearly that the prediction accuracy of all the models is 
very less. The prediction accuracy of BMS dataset is below 10 in all variants of neural networks. In Setup 4, 
LSTM has higher prediction accuracy than Setup 3 LSTM.  Setup 3 and 4 are found to be inappropriate 
parameters for web navigation prediction. Table 4 (E) depicts that there is a slight difference observed in the 
performance of lower order neural networks when applied on BMS dataset. LSTM is performing better for very 
short (1-gram) and long sessions (4- 6 grams). This proved the property of LSTM which can learn for short and 
long patterns both. In CTI dataset, LSTM is performing better on all N-Grams. In Setup 6, MLP is performing 
better than LSTM and NN on both datasets.   
 
Although LSTM performance is better in almost all the setups considered but it has attained best prediction 
accuracy with minimal loss in setup1 with parameters categorical cross entropy, Adam Optimizer, Relu 
activation function, 0.001 learning rate, Batch size 64 and  Softmax output activation function. The 
improvement range of LSTM over Neural Network in Setup1 for BMS dataset is 6.74 to 19.21. LSTM 
improvement over MLP for BMS dataset is 1.571 to 20.331 in Setup1.  LSTM improvement over basic Neural 
Network in Setup1 for CTI dataset ranges from 10.48 to 38.45 and over MLP ranges from 11.92 to 52.75. In 
feedforward networks, MLP is performing better at setup1 with parameters categorical cross entropy, SGD 
Optimizer, Softmax activation function, 0.001 learning rate, Batch size 1, Drop out true and Softmax output 
activation function. The improvement of MLP over NN ranges from 2.04 to 7.71 on BMS dataset and 0.88 to 
5.26 on CTI Dataset. 
 

Table 4: Prediction Accuracy of Neural Network and Deep Learning Models 
 

(A) Setup 1 
(loss: Categorical cross entropy, Optimizer: Adam, Activation Function: Relu, Learning rate:0.001, Batch size:64, Drop Out:true, 

Output Activation Function: Softmax ) 

 BMS Dataset 

 

CTI Dataset 

 

Grams NN MLP LSTM NN MLP LSTM 

1 [40.15, 5.3] [24.29, 6.882] [39.47, 5.027] [14.35, 7.765] [0.0579, 14.79] [52.80, 2.913] 

2 [20.56, 8.112] [10.30, 12.38] [30.63, 5.608] [14.52, 8.599] [17.42, 8.322] [31.06, 4.205] 



1746	 Honey Jindal  et al. / Procedia Computer Science 167 (2020) 1739–1748
8 Author name / Procedia Computer Science 00 (2019) 000–000 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

(B) Setup 2 
 

(loss:Categorical cross entropy, Optimizer:Adam, Activation Function:Relu, Learning rate:0.001, Batch size:1, Drop Out:true, Output 
Activation Function:Softmax ) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

(C) Setup 3 
(loss:Categorical cross entropy, Optimizer:SGD, Activation Function:Relu, Learning rate:0.001, Batch size:64, Drop Out:true, Output 

Activation Function:Softmax ) 
 
 
 
 
 

 

3 [6.283, 13.38] [13.02, 12.95] [25.49, 6.501] [7.888, 14.96] [3.743, 14.66] [25.72, 5.070] 

4 [8.575, 15.23] [20.80, 9.397] [22.37, 7.124] [2.999, 14.99] [2.121, 15.73] [25.77, 5.945] 

5 [4.889, 15.34] [1.956, 15.70] [15.64, 7.699] [9.738, 14.66] [0.0499, 16.05] [20.21, 6.981] 

6 [4.189, 16.07] [3.514, 15.75] [10.92, 7.923] [2.500, 15.99] [2.500, 15.90] [14.42, 7.770] 

 BMS Dataset 

 

CTI Dataset 

 

Grams NN MLP LSTM NN MLP LSTM 

1 [4.517, 7.502] [37.23, 16.12] [14.10, 5.343 ] [29.72, 5.019] [5.658, 16.11] [29.41, 5.040] 

2 [7.66, 7.311] [2.842, 16.11] [30.82, 7.304] [10.97, 6.231] [8.725, 16.10] [18.23, 6.243] 

3 [7.671, 7.48] [12.98, 16.11] [31.66, 8.052] [9.759, 6.271] [1.159, 16.11] [18.23, 6.602] 

4 [8.227, 7.931] [0.0579, 16.10] [30.53, 7.986] [12.66, 6.139] [0.0585, 15.97] [26.34, 6.655] 

5 [9.511, 8.262] [20.71, 15.99] [25.07, 9.297] [14.61, 6.461] [6.742, 15.39] [25.47, 7.270] 

6 [9.595, 8.493] [2.297, 15.67] [26.35, 9.29] [14.79, 6.437] [4.167, 15.51] [20.00, 8.649] 

 BMS Dataset 

 

CTI Dataset 

 

Grams NN MLP LSTM NN MLP LSTM 

1 [4.372, 7.010] [3.964, 7.712] [8.802, 6.132] [5.351, 5.687] [5.351, 5.554] [40.29, 5.955] 

2 [5.129, 8.092] [3.597, 7.984] [7.66, 5.937] [1.875, 7.269] [2.931, 7.749] [11.11, 6.024] 

3 [2.395, 7.757] [0.079, 7.928] [8.4, 5.859] [0.053, 6.942] [0.0757, 7.144] [9.715, 6.191] 

4 [2.491, 8.141] [2.260, 8.557 ] [9.212, 6.007] [1.097, 7.528] [2.195, 7.406] [13.46, 6.138] 

5 [1.867, 8.259] [6.933, 8.226] [10.67, 6.113] [0.074, 7.276] [0.0873, 8.072] [16.23, 6.104 ] 

6 [0.081, 8.380] [1.081, 8.428] [9.865, 6.103] [2.083, 7.612] [0.0416, 8.251] [10.61, 6.337] 
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(D) Setup 4 
(loss:Categorical cross entropy, Optimizer:SGD, Activation Function:Relu, Learning rate:0.001, Batch size:1, Drop Out:true, Output 

Activation Function:Softmax ) 
 

 
 
 

 
 

 
 
 
 

(E) Setup 5 
(loss:Categorical cross entropy, Optimizer:SGD, Activation Function:Softmax, Learning rate:0.001, Batch size:64, Drop Out:true, 

Output Activation Function:Softmax ) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(F) Setup 6 
(loss:Categorical cross entropy, Optimizer:SGD, Activation Function:Softmax, Learning rate:0.001, Batch size:1, Drop Out:true, 

Output Activation Function:Softmax ) 

 BMS Dataset 

 

CTI Dataset 

 

Grams NN MLP LSTM NN MLP LSTM 

1 [4.886, 8.119] [4.004, 7.172] [6.967, 6.280] [25.09, 6.100] [18.85, 5.352] [31.53, 4.802] 

2 [3.752, 7.530] [3.131, 7.481] [26.44, 5.459] [0.0954, 7.52] [3.033, 6.539] [27.57, 5.076] 

3 [1.562, 8.432] [3.436, 7.784] [29.36, 5.897 ] [0.0267, 6.416] [0.0267, 7.026] [27.32, 5.071] 

4 [2.202, 8.223] [5.388, 8.411] [23.70, 6.171] [0.0292, 7.429] [1.024, 7.474] [28.53, 5.237] 

5 [1.156, 10.33] [3.644, 8.673] [22.58, 6.206] [0.0499, 7.112] [0.074, 6.972] [26.09, 5.331] 

6 [4.459, 9.197] [2.973, 9.311] [19.86, 6.334] [0.0416, 8.075] [2.083, 7.616] [18.75, 5.692] 

 BMS Dataset 

 

CTI Dataset 

 

Grams NN MLP LSTM NN MLP LSTM 

1 [7.362, 6.118] [7.154, 6.047] [7.691, 6.147] [29.38, 6.006] [29.38, 5.437] [40.18, 5.974] 

2 [7.726, 6.129] [7.371, 6.072] [7.66, 5.928] [10.74, 6.426] [10.97, 6.293] [10.97, 6.039] 

3 [11.21, 6.156] [6.560, 6.148] [11, 5.893] [7.843, 6.493] [8.690, 6.492] [10.70, 6.182] 

4 [6.663, 6.187] [7.068, 6.170] [9.676, 6.063] [9.290, 6.501] [9.802, 6.501] [13.68, 6.133] 

5 [5.193, 6.194] [7.289, 6.185] [10.49, 6.057] [2.622, 6.514] [6.742, 6.510] [14.48, 6.136] 

6 [1.891, 6.201] [2.297, 6.196] [9.784, 5.992 ] [1.042, 6.524] [0.0833, 6.521] [11.67, 6.386] 

 BMS Dataset 

 

CTI Dataset 

 

Grams NN MLP LSTM NN MLP LSTM 

1 [32.27, 5.218] [39.56, 4.632] [7.22, 6.284] [56.12, 3.305] [58.55, 3.107] [31.56, 4.783] 

2 [29.91, 5.437] [36.72, 4.847] [28.24, 5.562] [31.18, 4.555] [35.48, 4.180] [29.93, 4.897] 
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(D) Setup 4 
(loss:Categorical cross entropy, Optimizer:SGD, Activation Function:Relu, Learning rate:0.001, Batch size:1, Drop Out:true, Output 

Activation Function:Softmax ) 
 

 
 
 

 
 

 
 
 
 

(E) Setup 5 
(loss:Categorical cross entropy, Optimizer:SGD, Activation Function:Softmax, Learning rate:0.001, Batch size:64, Drop Out:true, 

Output Activation Function:Softmax ) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(F) Setup 6 
(loss:Categorical cross entropy, Optimizer:SGD, Activation Function:Softmax, Learning rate:0.001, Batch size:1, Drop Out:true, 

Output Activation Function:Softmax ) 

 BMS Dataset 

 

CTI Dataset 

 

Grams NN MLP LSTM NN MLP LSTM 

1 [4.886, 8.119] [4.004, 7.172] [6.967, 6.280] [25.09, 6.100] [18.85, 5.352] [31.53, 4.802] 

2 [3.752, 7.530] [3.131, 7.481] [26.44, 5.459] [0.0954, 7.52] [3.033, 6.539] [27.57, 5.076] 

3 [1.562, 8.432] [3.436, 7.784] [29.36, 5.897 ] [0.0267, 6.416] [0.0267, 7.026] [27.32, 5.071] 

4 [2.202, 8.223] [5.388, 8.411] [23.70, 6.171] [0.0292, 7.429] [1.024, 7.474] [28.53, 5.237] 

5 [1.156, 10.33] [3.644, 8.673] [22.58, 6.206] [0.0499, 7.112] [0.074, 6.972] [26.09, 5.331] 

6 [4.459, 9.197] [2.973, 9.311] [19.86, 6.334] [0.0416, 8.075] [2.083, 7.616] [18.75, 5.692] 

 BMS Dataset 

 

CTI Dataset 

 

Grams NN MLP LSTM NN MLP LSTM 

1 [7.362, 6.118] [7.154, 6.047] [7.691, 6.147] [29.38, 6.006] [29.38, 5.437] [40.18, 5.974] 

2 [7.726, 6.129] [7.371, 6.072] [7.66, 5.928] [10.74, 6.426] [10.97, 6.293] [10.97, 6.039] 

3 [11.21, 6.156] [6.560, 6.148] [11, 5.893] [7.843, 6.493] [8.690, 6.492] [10.70, 6.182] 

4 [6.663, 6.187] [7.068, 6.170] [9.676, 6.063] [9.290, 6.501] [9.802, 6.501] [13.68, 6.133] 

5 [5.193, 6.194] [7.289, 6.185] [10.49, 6.057] [2.622, 6.514] [6.742, 6.510] [14.48, 6.136] 

6 [1.891, 6.201] [2.297, 6.196] [9.784, 5.992 ] [1.042, 6.524] [0.0833, 6.521] [11.67, 6.386] 

 BMS Dataset 

 

CTI Dataset 

 

Grams NN MLP LSTM NN MLP LSTM 

1 [32.27, 5.218] [39.56, 4.632] [7.22, 6.284] [56.12, 3.305] [58.55, 3.107] [31.56, 4.783] 

2 [29.91, 5.437] [36.72, 4.847] [28.24, 5.562] [31.18, 4.555] [35.48, 4.180] [29.93, 4.897] 
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5. Conclusion 

Web Navigation Prediction is a complex problem which requires multiple class handling. Deep Learning Neural 
Networks have the ability to handle large data with multiple classes efficiently. This paper investigated the 
performance of the basic neural network with deep learning feed forward network (Multi-Layer Perceptron) and 
deep learning feed backward network (Long-Short Term Memory) for Web Navigation Prediction. These 
networks are evaluated using different combinations of parameters in six setups and 216 models were 
evaluated. The experiments were carried on two real web navigation datasets, BMS and CTI. It has been 
observed that the performance of LSTM is superior in most of the setups. The parameters considered in setup 1 
were the best as LSTM attained best prediction accuracy with minimal loss. While comparing MLP with NN, 
the performance was best in setup 6 and MLP has shown better results. In future, the deep learning models can 
be hybridized with web navigation prediction sequential models to address unseen predictions.    
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3 [23.74, 5.664] [31.45, 5.352] [30.48, 5.816] [24.37, 4.992] [29.01, 4.606] [24.73, 5.042] 

4 [16.98, 6.042] [23.81, 5.754] [23.80, 6.114] [23.27, 5.310] [28.53, 4.912] [27.94, 5.149] 

5 [14.22, 6.159] [17.87, 5.995] [17.82, 6.33] [19.10, 5.487] [21.10, 5.319] [21.01, 5.401] 

6 [10.68, 6.280] [12.72, 6.219] [12.70, 6.369] [15.37, 5.841] [16.25, 5.809] [0.88, 5.690] 


