Self-Flying Aircraft

Prakhar Dubey, Raghav Mehta

Abstract - Within the last decade, the
advancement in automation of vehicles such as
cars and planes promise to fundamentally alter
the microeconomics of transporting people and
goods. In this paper, we focus on the self-flying
aircraft through computer vision. This subset of
automated flight would be the most valuable in
terms of efficiency, human error reduction and
loss of life due to mid-air collisions. We present
an analysis of control systems for collision
avoidance for an aircraft.

Keywords - UAV; UAS; UTM; drones;
identification; traffic management system;
collision avoidance.

L. INTRODUCTION

Advances in computer vision technology have
enabled its wide adoption in the auto industry.
Today, many vehicles are equipped with backup,
front-looking, and side-looking cameras that allow
for real time environment analysis and critical
decision making.

Many vehicular technologies, particularly those for
safety and guidance, can roughly be classified into
autonomous (autonomous vehicles) [1, 2, 3, 4] and
collaborative (connected vehicles) [5, 6] schemes.
In an autonomous scheme, a vehicle relies mostly
on its own on-board sensor to produce
environmental data for real time manoeuvrings,
navigation and collision avoidance.

II. RELATED WORK

II-I. Transfer Learning
A closely related area of work to our study is
transfer learning (see Pan and Yang [7] for a
review). The early studies of transfer learning with
Deep Convolutional Networks successfully
demonstrated domain adaptation through pre-
training on source data and fine-tuning on target
data [9, 10, 11]. Further studies such as the work of
Ganin et al. [8] present more sophisticated
approaches to domain adaptation. In this work, we

apply the most widely used fine-tuning approach to
domain adaptation and leave further studies on
feature transferability of the synthetic data to the
future work.

II-II. Imitation Learning

Imitation learning has been commonly applied to
solve different tasks in isolation. This usually
requires either careful feature engineering, or a
significant number of samples. This is far from
what we desire: ideally, robots should be able to
learn from very few demonstrations of any given
task, and instantly generalise to new situations of
the same task, without requiring task-specific
engineering. In this paper, we propose a meta-
learning framework for achieving such capability,
which we call one-shot imitation learning.

Specifically, we consider the setting where there is
a very large set of tasks, and each task has many
instantiations. For example, a task could be to stack
all blocks on a table into a single tower, another
task could be to place all blocks on a table into
two-block towers, etc. In each case, different
instances of the task would consist of different sets
of blocks with different initial states. At training
time, our algorithm is presented with pairs of
demonstrations for a subset of all tasks. A neural
net is trained that takes as input one demonstration
and the current state (which initially is the initial
state of the other demonstration of the pair), and
outputs an action with the goal that the resulting
sequence of states and actions matches as closely
as possible with the second demonstration. At test
time, a demonstration of a single instance of a new
task is presented, and the neural net is expected to
perform well on new instances of this new task.
The use of soft attention allows the model to
generalise to conditions and tasks unseen in the
training data. We anticipate that by training this
model on a much greater variety of tasks and
settings, we will obtain a general system that can
turn any demonstrations into robust policies that
can accomplish an overwhelming variety of tasks.

III. DATASET

Fig. 1 Synthetically rendered Environment (up)
Real World Environment (down)

III-I. Authenticity

Our work focuses on controlling an aircraft in a
real world flight simulator. It is thus, imperative to
gather data appropriately. Since game simulators
provide a great benchmark for obtaining training
data as can be seen in fig. 1, we used the flight
engine in Grand Theft Auto V for generating the
frames required for this work.

This platform seems to be an authentic source for
coming up with the dataset as noted duly by Will
Knight in ‘MIT Technology Review’ quoting “Self-
Driving Cars Can Learn a Lot by Playing Grand
Theft Auto. Hyper-realistic computer games may
offer an efficient way to teach Al algorithms about
the real world. Several research groups are now
using the hugely popular game, which features fast
cars and various nefarious activities, to train
algorithms that might enable a self-driving car to
navigate a real road.” [12] (MIT technology
review, Intelligent Machines by Will Knight)

Similar findings were proposed in the SHAFAEI et
al. [13] (Alireza Shafaei, James J. Little and Mark
Schmidt. On - Play and Learn: Using Video Games
to Train Computer Vision Models, 2016) Over
60,000 synthetic samples were collected from a
modern video game with similar conditions to the
real-world CamVid and Cityscapes datasets.
Several experiments were demonstrated indicating
that a convolutional network trained on synthetic
data achieved a similar test error to a network that

was trained on real-world data for dense image
classification. Furthermore, the synthetically
generated RGB images could provide similar or
better results compared to the real-world datasets if
a simple domain adaptation technique was applied.
Instead of monitoring ground traffic, we instead
look at the aircraft, its surroundings and seek to
achieve successful locomotion after training the
model with a CNN architecture.

[II-II. Generation

The dataset generation was the bulkiest portion of
the work. In addition to perfectly flying the plane
in GTA-V repeatedly, several utilities had to be
added to ensure no unwanted frames went into the
dataset. Grabbing the data frames from the
windows DC handle of the process was the
foremost task. After taking the win32 handle of the
process, the captured frames were converted to
bitmap images. These frames were linked with the
corresponding keyboard input as labels and
appended into a numpy file for storage.

The complete module involved three stages:
takeoff, cruise and landing.

All three of the stages required repeated runs of the
plane, taking off successfully, cruising through the
target circles and finally landing safely on the
runway and coming to a halt.

At each step, a start-stop feature for frame
capturing was introduced so that only relevant
frames entered the data.

Once enough frames for each stage were obtained
(~100,000). We stopped doing runs and fed the
data into the net.

III-III. Annotation
The data was of the form ([image, keyinput]). After
combing through the data for any errors, the
keyinput was mapped to a multi one-hot array. The
keys corresponded as a [W, A, S, D, 8,4, 6, 5] list
each of which controlled the aircraft in the way a
real plane is handled (see fig. 2).

W-S were linked to thrust and brakes. A-D
controlled the perpendicular Yaw axis. 8-5 were
used for changing the pitch while 4-6 allowed the
aircraft to roll longitudinally. The multi-one hot
array contained a bit(0/1) linked to each button. It
also included a ninth parameter for no keyinput. So
any input which was pressed could be mapped as a
bit list. For instance, thrusting while rolling left

would be taken as a bit list of [1,0,0,0,1,0,0,0,
0].

After the data formatting was completed, the
dataset was divided into a 95:5 training and test set
and pushed into the CNN used.

Perpendicular axis
/

\ >

/_;ﬂ//

N

Longitudinal axis Center of gravity

Roll)
Lateral axis

Pitch

Fig. 2: Motions available to a plane in actual flight.
IV. DATA PROCESSING

IV-I. Convolutional Neural Network

As stated in the paper for AlexNet [3] (Alex
Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton.
On - [ImageNet Classification with Deep
Convolutional Neural Networks) To learn about
thousands of objects from millions of images, we
need a model with a large learning capacity. The
capacity of Convolutional Neural Networks
(CNNs) can be controlled by varying their depth
and breadth, and they also make strong and mostly
correct assumptions about the nature of images
(namely, stationarity of statistics and locality of
pixel dependencies). Thus, compared to standard
feedforward neural networks with similarly-sized
layers, CNNs have much fewer connections and
parameters and so they are easier to train, while
their theoretically-best performance is likely to be
only slightly worse.

Despite the attractive qualities of CNNs, and
despite the relative efficiency of their local
architecture, they have still been prohibitively
expensive to apply in large scale to high-resolution
images. Luckily, current GPUs, paired with a
highly-optimized implementation of 2D
convolution, are powerful enough to facilitate the
training of interestingly-large CNNs.

In the end, the network’s size is limited mainly by
the amount of memory available on current GPUs
and by the amount of training time that we are
willing to tolerate. Due to limited power capacity,
GPU capabilities and time bounds, we fed the data
into the simple yet better performing AlexNet
architecture, tweaking it slightly to give relevant
results.

Fig. 3: Alexnet architecture.

IV-II. The Architecture

The net contains eight layers with weights; the first
five are convolutional and the remaining three are
fully connected. The output of the last fully-
connected layer is fed to a 9-way softmax which
produces a distribution over the 9 class labels.

The above final layer has been modified to give
relevant output to our aircraft as keyboard input for
the simulator.

The neurons in the fully connected layers are
connected to all neurons in the previous layer.
Response-normalization layers follow the first and
second convolutional layers. Max-pooling layers,
follow both response-normalization layers as well
as the fifth convolutional layer. The ReLU non-
linearity is applied to the output of every
convolutional and fully-connected layer.

The first convolutional layer filters the 224x224x3
input image with 96 kernels of size 11x11x3 with a
stride of 4 pixels (this is the distance between the
receptive field centers of neighboring neurons in a
kernel map). The second convolutional layer takes
as input the (response-normalized and pooled)
output of the first convolutional layer and filters it
with 256 kernels of size 5 x 5 x 48. The third,
fourth, and fifth convolutional layers are connected
to one another without any intervening pooling or
normalization layers. The third convolutional layer
has 384 kernels of size 3 x 3 x 256 connected to
the (normalized, pooled) outputs of the second

convolutional layer. The fourth convolutional layer
has 384 kernels of size 3 x 3 x 192, and the fifth
convolutional layer has 256 kernels of size 3 x 3 x
192. The fully-connected layers have 4096
neurones each.

IV-III. Implementation

There are three separate models prepared for
takeoff, cruise and landing. Each is trained
separately and tested on the divided dataset.

When a module is initiated, it takes the simulator
window DC and converts it to bitmap for the image
input. Then, corresponding to the image, it predicts
whether it needs to thrust or brake, yaw left or
right, pitch up or down, roll clockwise or
anticlockwise or do nothing. For every frame it
outputs a bit list as explained above. This output is
in the form of keyboard input which is fed directly
to the simulator which then takes the corresponding
course of action.

Each of the prepared models are tested, although
the accuracy of the model as seen from tensorboard
may not justify the performance since it relates to
the correct output per frame instead of taking into
account whether it was successfully able to takeoff
or land the plane.

In general though, the plane performs admirably in
takeoff and landing phases where most human
pilots fail.

V. CONCLUDING REMARKS

As video games progress towards photorealistic
environments, we can also use them for the training
of computer vision models at no extra cost. We
delivered a proof of concept by exploring the use
of synthetic RGB images that we extracted from a
video game.[15]

We examined GTA-V as a model to test, train and
enhance deep learning in self-flying aircraft
research. We found that GTA-V allows researchers
to create, train, and test on photo-realistic data to
accurately estimate from the driver’s perspective
the distance to lane markings, distance to cars, and
angle of navigation. The best results of the CNN
came from estimating horizon and altitude
maintenance. The aircraft stability estimation could
be improved with more training time,. Additionally,
we used GTA-V as a model in creating a more

robust training environment that would allow
researchers to easily create data for testing and
training models on. Using our fabricated
environment we were able to recreate critical oil
safe training scenarios. We showed that virtual data
can be a powerful way to create new data
invaluable for training and testing neural networks
for autonomous driving. The most important way
to further validate this work and to make it truly
useful is to combine it with real data to understand
what the current limitations are with mixing real
and virtual data as well as augmenting data sets
that need specific corner cases.

ra
el

SUPPLEMENTARY GRAPHS

Accuracy

0.970
0.960
0.950 - R 1 L . . N ULELCN 1 s !
0.940
0.930
0.920 - -
0.910

0.900 B 1 pums

0.000 2000 400.0 6000 800.0 1.000k 1.200k 1.400k 1.600k 1.800k 2.000k 2200k 2.400k

£l

Accuracy/__raw_ Accuracy/Validation

I

0.00

-24

= 1000

|

2000

3000

4000

5000

6000

.

N

7000

Seeemane

1
-0.0045 -0.0035 -0.0025 -0.0015 -0.0005 0.0005 0.0015 0.0025 0.0035 0.004265 0.0055 -0.019-0.017-0.015-0.013-0.011-0.009-0.007-0.005-0.003-0.0010.001 0.003 0.005 0.007 0.009 0.011 0.013 0.(0.0162 7 (

ra
La

Fully connected Layer Gradients Normalised

REFERENCES

[1] E. Guizzo. How Google’s Self-Driving Car Works. IEEE Spectrum, Feb. 2013.

[2] HAVEIit. European Union Research Project HAVEit. http://www.haveit-eu.org/, 2015.

[3] Hoeger Reiner and Amditis Angelos and Kunert Martin and Hoess Alfred and Flemish Frank and
Krueger Hans-Peter and Bartels Arne and Beutner Achim and Pagle Katia. Highly Automated Vehicles for

Intelligent Transport: HAVEit Approach. In Proceedings of the 15th World Congress on ITS, 2008.

[4] I. of Engineering and Technology. Autonomous vehicles from Mercedes, BMW and Audi debut at CES.
http://eandt. theiet.org/news/2015/jan/autonomous-cars-ces.cfm, 2015.

[5] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. Mark. Connected Vehicles: Solutions and Challenges. IEEE
Internet of Things Journal, Aug. 2014.

[6] E. T.S. 1. ETSI. Intelligent Transport Systems Standards. http://www.etsi.org/index.php/ technologies-
clusters/technologies/intelligent-transport, 2015.

[7] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge and
Data Engineering, 2010.

[8] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features off-the-
shelf: an astounding baseline for recognition. In CVPR Workshops, 2014

[9] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell.
DeCAF: A deep convolutional activation feature for generic visual recognition. In ICML, 2014.

[10] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In NIPS. 2014.

[11] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Frangois
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. JMLR,

2016.

[13] Half-Life 2. http://www.valvesoftware.com/games/hl2.html.

[13] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Susstrunk.
SLIC superpixels compared to state-of-the-art superpixel methods. TPAMI, 2012.

[14] https://arxiv.org/pdf/1712.01397 .pdf

[15] Play and Learn: Using Video Games to Train Computer Vision Models. https://arxiv.org/pdf/
1608.01745 .pdf.

