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Abstract  -  Within  the  last  decade,  the 
advancement in automation of vehicles such as 
cars and planes promise to fundamentally alter 
the microeconomics of transporting people and 
goods. In this paper, we focus on the self-flying 
aircraft through computer vision. This subset of 
automated flight would be the most valuable in 
terms of efficiency, human error reduction and 
loss of life due to mid-air collisions. We present 
an  analysis  of  control  systems  for  collision 
avoidance for an aircraft.
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I. INTRODUCTION

Advances  in  computer  vision  technology  have 
enabled  its  wide  adoption  in  the  auto  industry. 
Today,  many vehicles  are  equipped with  backup, 
front-looking, and side-looking cameras that allow 
for  real  time  environment  analysis  and  critical 
decision making.

Many vehicular technologies, particularly those for 
safety and guidance, can roughly be classified into 
autonomous (autonomous vehicles) [1, 2, 3, 4] and 
collaborative (connected vehicles) [5, 6] schemes. 
In an autonomous scheme, a vehicle relies mostly 
on  its  own  on-board  sensor  to  produce 
environmental  data  for  real  time  manoeuvrings, 
navigation and collision avoidance.

II. RELATED WORK

II-I.       Transfer Learning 
A closely  related  area  of  work  to  our  study  is 
transfer  learning  (see  Pan  and  Yang  [7]  for  a 
review). The early studies of transfer learning with 
Deep  Convolutional  Networks  successfully 
demonstrated  domain  adaptation  through  pre-
training on source data  and fine-tuning on target 
data [9, 10, 11]. Further studies such as the work of 
Ganin  et  al.  [8]  present  more  sophisticated 
approaches to domain adaptation. In this work, we 

apply the most widely used fine-tuning approach to 
domain  adaptation  and  leave  further  studies  on 
feature transferability of the synthetic data to the 
future work.

II-II.     Imitation Learning
Imitation learning has been commonly applied to 
solve  different  tasks  in  isolation.  This  usually 
requires  either  careful  feature  engineering,  or  a 
significant  number  of  samples.  This  is  far  from 
what we desire:  ideally,  robots should be able to 
learn from very few demonstrations of any given 
task, and instantly generalise to new situations of 
the  same  task,  without  requiring  task-specific 
engineering.  In  this  paper,  we  propose  a  meta-
learning framework for achieving such capability, 
which we call one-shot imitation learning. 

Specifically, we consider the setting where there is 
a very large set of tasks, and each task has many 
instantiations. For example, a task could be to stack 
all  blocks on a table into a single tower,  another 
task could be to  place all  blocks on a  table  into 
two-block  towers,  etc.  In  each  case,  different 
instances of the task would consist of different sets 
of  blocks  with  different  initial  states.  At  training 
time,  our  algorithm  is  presented  with  pairs  of 
demonstrations for a subset of all tasks. A neural 
net is trained that takes as input one demonstration 
and the current state (which initially is the initial 
state of the other demonstration of the pair),  and 
outputs an action with the goal that the resulting 
sequence of states and actions matches as closely 
as possible with the second demonstration. At test 
time, a demonstration of a single instance of a new 
task is presented, and the neural net is expected to 
perform well  on new instances  of  this  new task. 
The  use  of  soft  attention  allows  the  model  to 
generalise  to  conditions  and  tasks  unseen  in  the 
training  data.  We  anticipate  that  by  training  this 
model  on  a  much  greater  variety  of  tasks  and 
settings, we will obtain a general system that can 
turn  any  demonstrations  into  robust  policies  that 
can accomplish an overwhelming variety of tasks. 

III. DATASET



Fig. 1 Synthetically rendered Environment (up) 
Real World Environment (down)

III-I.     Authenticity
Our  work focuses  on controlling an aircraft  in  a 
real world flight simulator. It is thus, imperative to 
gather  data  appropriately.  Since  game  simulators 
provide a  great  benchmark for  obtaining training 
data as can be seen in fig.  1,  we used the flight 
engine in Grand Theft Auto V for generating the 
frames required for this work.

This platform seems to be an authentic source for 
coming up with the dataset as noted duly by Will 
Knight in ‘MIT Technology Review’ quoting “Self-
Driving Cars Can Learn a Lot by Playing Grand 
Theft  Auto.  Hyper-realistic  computer  games  may 
offer an efficient way to teach AI algorithms about 
the  real  world.  Several  research  groups  are  now 
using the hugely popular game, which features fast 
cars  and  various  nefarious  activities,  to  train 
algorithms that might enable a self-driving car to 
navigate  a  real  road.”  [12]  (MIT  technology 
review, Intelligent Machines by Will Knight)

Similar findings were proposed in the SHAFAEI et 
al. [13] (Alireza Shafaei, James J. Little and Mark 
Schmidt. On - Play and Learn: Using Video Games 
to  Train  Computer  Vision  Models,  2016)  Over 
60,000  synthetic  samples  were  collected  from  a 
modern video game with similar conditions to the 
real-world  CamVid  and  Cityscapes  datasets. 
Several experiments were demonstrated indicating 
that  a convolutional network trained on synthetic 
data achieved a similar test error to a network that 

was  trained  on  real-world  data  for  dense  image 
classification.  Furthermore,  the  synthetically 
generated  RGB  images  could  provide  similar  or 
better results compared to the real-world datasets if 
a simple domain adaptation technique was applied.
Instead  of  monitoring  ground  traffic,  we  instead 
look at  the  aircraft,  its  surroundings  and seek to 
achieve  successful  locomotion  after  training  the 
model with a CNN architecture.

III-II.     Generation
The dataset generation was the bulkiest portion of 
the work. In addition to perfectly flying the plane 
in  GTA-V repeatedly,  several  utilities  had  to  be 
added to ensure no unwanted frames went into the 
dataset.  Grabbing  the  data  frames  from  the 
windows  DC  handle  of  the  process  was  the 
foremost task. After taking the win32 handle of the 
process,  the  captured  frames  were  converted  to 
bitmap images. These frames were linked with the 
corresponding  keyboard  input  as  labels  and 
appended into a numpy file for storage.
The  complete  module  involved  three  stages: 
takeoff, cruise and landing.

All three of the stages required repeated runs of the 
plane, taking off successfully, cruising through the 
target  circles  and  finally  landing  safely  on  the 
runway and coming to a halt.
At  each  step,  a  start-stop  feature  for  frame 
capturing  was  introduced  so  that  only  relevant 
frames entered the data.
Once enough frames for each stage were obtained 
(~100,000).  We  stopped  doing  runs  and  fed  the 
data into the net.

III-III.     Annotation
The data was of the form ([image, keyinput]). After 
combing through the data for any errors, the 
keyinput was mapped to a multi one-hot array. The 
keys corresponded as a [W, A, S, D, 8, 4, 6, 5] list 
each of which controlled the aircraft in the way a 
real plane is handled (see fig. 2).

W-S  were  linked  to  thrust  and  brakes.  A-D 
controlled  the  perpendicular  Yaw  axis.  8-5  were 
used for changing the pitch while 4-6 allowed the 
aircraft  to  roll  longitudinally.  The  multi-one  hot 
array contained a bit(0/1) linked to each button. It 
also included a ninth parameter for no keyinput. So 
any input which was pressed could be mapped as a 
bit  list.  For  instance,  thrusting  while  rolling  left 



would be taken as a bit list of [1, 0, 0, 0, 1, 0, 0, 0, 
0].

After  the  data  formatting  was  completed,  the 
dataset was divided into a 95:5 training and test set 
and pushed into the CNN used.

�
Fig. 2: Motions available to a plane in actual flight.

IV.     DATA PROCESSING

IV-I.     Convolutional Neural Network
As  stated  in  the  paper  for  AlexNet  [3]  (Alex 
Krizhevsky,  Ilya  Sutskever,  Geoffrey  E.  Hinton. 
On  -  ImageNet  Classification  with  Deep 
Convolutional  Neural  Networks)  To  learn  about 
thousands of objects from millions of images, we 
need a model with a large learning capacity. The 
capacity  of  Convolutional  Neural  Networks 
(CNNs) can be controlled by varying their  depth 
and breadth, and they also make strong and mostly 
correct  assumptions  about  the  nature  of  images 
(namely,  stationarity  of  statistics  and  locality  of 
pixel  dependencies).  Thus,  compared  to  standard 
feedforward  neural  networks  with  similarly-sized 
layers,  CNNs  have  much  fewer  connections  and 
parameters  and so they are  easier  to  train,  while 
their theoretically-best performance is likely to be 
only slightly worse.
Despite  the  attractive  qualities  of  CNNs,  and 
despite  the  relative  efficiency  of  their  local 
architecture,  they  have  still  been  prohibitively 
expensive to apply in large scale to high-resolution 
images.  Luckily,  current  GPUs,  paired  with  a 
highly-optimized  implementation  of  2D 
convolution, are powerful enough to facilitate the 
training of interestingly-large CNNs.

In the end, the network’s size is limited mainly by 
the amount of memory available on current GPUs 
and  by  the  amount  of  training  time  that  we  are 
willing to tolerate. Due to limited power capacity, 
GPU capabilities and time bounds, we fed the data 
into  the  simple  yet  better  performing  AlexNet 
architecture,  tweaking it  slightly  to  give  relevant 
results.
 

�  
Fig. 3: Alexnet architecture.

 

IV-II.    The Architecture
The net contains eight layers with weights; the first 
five are convolutional and the remaining three are 
fully  connected.  The  output  of  the  last  fully-
connected layer is fed to a 9-way softmax which 
produces a distribution over the 9 class labels.
The above final  layer  has  been modified to  give 
relevant output to our aircraft as keyboard input for 
the simulator.

The  neurons  in  the  fully  connected  layers  are 
connected  to  all  neurons  in  the  previous  layer. 
Response-normalization layers follow the first and 
second  convolutional  layers.  Max-pooling  layers, 
follow both response-normalization layers as well 
as  the  fifth  convolutional  layer.  The  ReLU non-
linearity  is  applied  to  the  output  of  every 
convolutional and fully-connected layer.

The first convolutional layer filters the 224×224×3 
input image with 96 kernels of size 11×11×3 with a 
stride of 4 pixels (this is the distance between the 
receptive field centers of neighboring neurons in a 
kernel map). The second convolutional layer takes 
as  input  the  (response-normalized  and  pooled) 
output of the first convolutional layer and filters it 
with  256 kernels  of  size  5  ×  5  ×  48.  The third, 
fourth, and fifth convolutional layers are connected 
to one another without any intervening pooling or 
normalization layers. The third convolutional layer 
has 384 kernels of size 3 × 3 × 256 connected to 
the  (normalized,  pooled)  outputs  of  the  second 



convolutional layer. The fourth convolutional layer 
has 384 kernels of size 3 × 3 × 192, and the fifth 
convolutional layer has 256 kernels of size 3 × 3 × 
192.  The  fully-connected  layers  have  4096 
neurones each.

IV-III.    Implementation
There  are  three  separate  models  prepared  for 
takeoff,  cruise  and  landing.  Each  is  trained 
separately and tested on the divided dataset.
When a module is initiated, it takes the simulator 
window DC and converts it to bitmap for the image 
input. Then, corresponding to the image, it predicts 
whether  it  needs  to  thrust  or  brake,  yaw left  or 
right,  pitch  up  or  down,  roll  clockwise  or 
anticlockwise  or  do  nothing.  For  every  frame  it 
outputs a bit list as explained above. This output is 
in the form of keyboard input which is fed directly 
to the simulator which then takes the corresponding 
course of action.

Each of the prepared models are tested, although 
the accuracy of the model as seen from tensorboard 
may not justify the performance since it relates to 
the correct output per frame instead of taking into 
account whether it was successfully able to takeoff 
or land the plane.

In general though, the plane performs admirably in 
takeoff  and  landing  phases  where  most  human 
pilots fail.

V. CONCLUDING REMARKS

As  video  games  progress  towards  photorealistic 
environments, we can also use them for the training 
of  computer  vision  models  at  no  extra  cost.  We 
delivered a proof of concept by exploring the use 
of synthetic RGB images that we extracted from a 
video game.[15]

We examined GTA-V as a model to test, train and 
enhance deep learning in self-flying aircraft 
research. We found that GTA-V allows researchers 
to create, train, and test on photo-realistic data to 
accurately estimate from the driver’s perspective 
the distance to lane markings, distance to cars, and 
angle of navigation. The best results of the CNN 
came from estimating horizon and altitude 
maintenance. The aircraft stability estimation could 
be improved with more training time,. Additionally, 
we used GTA-V as a model in creating a more 

robust training environment that would allow 
researchers to easily create data for testing and 
training models on. Using our fabricated 
environment we were able to recreate critical oil 
safe training scenarios. We showed that virtual data 
can be a powerful way to create new data 
invaluable for training and testing neural networks 
for autonomous driving. The most important way 
to further validate this work and to make it truly 
useful is to combine it with real data to understand 
what the current limitations are with mixing real 
and virtual data as well as augmenting data sets 
that need specific corner cases.  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