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Abstract—CLIP (Contrastive Language-Image Pre-
training) excels in zero-shot image classification across diverse
domains, making it an ideal candidate for pre-labelling
unlabelled datasets. This paper introduces three pivotal
enhancements designed to elevate CLIP-based pre-labeling
efficacy without the need for labeled data. First, we introduce
prompt refinement using a large language model (GPT-3.5-
Turbo) to generate more descriptive prompts, significantly
boosting accuracy on various datasets. Second, we address
overconfident predictions through confidence calibration,
achieving improved results without the need for a separate
labeled validation set. Lastly, we leverage the inductive biases
of CLIP and DINOvV2 through ensembling, demonstrating a
substantial boost in zero-shot labeling accuracy. Experimental
results across various datasets consistently demonstrate
enhanced performance, particularly in handling ambiguous
classes. This work not only addresses limitations in CLIP but
also provides valuable insights for advancing multimodal
models in real-world applications.
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I. INTRODUCTION

This paper introduces an augmented iteration of CLIP
(Contrastive Language-Image Pre-training), a pioneering
multimodal model developed by OpenAl [1]. While CLIP
exhibits commendable zero-shot performance, its efficacy in
pre-labelling diverse datasets often falls short. Recognising
this gap, we introduce three targeted techniques to bolster
CLIP's adaptability and precision: refining input text
prompts, calibrating confidence scores, and leveraging the
image-only DINOvV2 featurizer [2]. By addressing inherent
challenges in pre-labelling scenarios, we equip CLIP with a
nuanced understanding that exceeds its impressive zero-shot
capabilities, ensuring its proficiency in diverse classification
tasks.

Each of the three proposed methods separately enhances
CLIP performance, starting with the nuanced refinement of
input text prompts. By carefully curating prompts to
describe classes of interest, CLIP's semantic understanding
of the classes is significantly improved [3]. Calibrating
confidence scores tackles differences in how the model
perceives samples in its latent feature space and the classes
to be labeled in the present task. The original pre-training
establishes fixed similarities between classes, but for a
specific user task, a different perspective may be needed [1].

Furthermore, we introduce an ensemble approach by
incorporating the image-only DINOv2 featurizer. The varied
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biases from language-image pre-training and image-only
contrastive training in the two models create diversity in
predictions, making ensembling beneficial [2]. Through
comprehensive experimentation and analysis, we showcase
the collective impact of these enhancements on the CLIP
model.

Our experiments across various datasets demonstrated
consistent accuracy boosts. From minor to significant
improvements, these methods prove pivotal for enhancing
CLIP in pre-labelling classification datasets, thus setting an
encouraging tone for our continued exploration.

1I. PROMPT REFINEMENT

To enhance the adaptability and accuracy of CLIP for
pre-labelling diverse datasets, we introduce a novel approach
to prompt refinement. This technique leverages Language
Models (LLMs) to curate descriptive prompts for classes,
addressing nuances in language representation and ambiguity
inherent in natural language. The refined prompts contribute
to an improved semantic understanding of classes within the
CLIP model.

A. Descriptive Prompt Generation

We use LLMs to generate descriptive prompts for each
class in the dataset. By utilising the inherent language
understanding capabilities of LLMs, we aim to capture the
rich semantics associated with each class [4]. This involves
crafting prompts that not only succinctly describe the class
but also encapsulate contextual information that aids in
differentiating between similar classes.

B. Ambiguity Scoring

To further refine the prompt selection process, we utilise
LLMs to assign ambiguity scores to the generated prompts.
These scores are determined based on multiple factors:

is_misspelled: Identifying if a prompt contains incorrect
spellings, ensuring the accuracy of the language used.

is_ambiguous: Evaluating whether a prompt is
ambiguous or non-ambiguous, particularly when a class
name has multiple meanings.

is_generic: Assessing the specificity of the prompt,
flagging prompts that may be too generic and require
additional specificity.

common_score: Assigning a float value indicating the
commonality of the prompt phrase, allowing for the selection
of diverse and representative prompts.



C. Refined Prompt

Incorporating the above-mentioned scores, the LLM
produces cleaned options that serve as refined prompts.
These cleaned options form a curated list providing
additional context about the input class name and its
superclass (type of object). The list aims to enrich the
understanding of the class within the multimodal CLIP
framework. Multiple options are provided to ensure a
comprehensive coverage of the class semantics, fostering a
nuanced understanding that transcends beyond the
limitations of a single prompt.

By integrating prompt refinement through LLMs, we
enhance the textual input to CLIP, enabling the model to
better discern and categorise diverse classes in pre-labelling
scenarios. This meticulous approach contributes to the
overall efficacy of CLIP in handling a wide range of
classification tasks.

Selected example outputs for the “Schooner” class in the
“Caltech101” dataset:

I. Ambiguity, Genericity, and proposed cleaned options for
a few Caltech101 classes

Class is_ambig is_gener cleaned_options
uous ic
Schooner TRUE FALSE ['Schooner, a type of
sailing ship.',
'Schooner, a type of beer
glass.’]
Ceiling FALSE FALSE [‘ceiling fan, a type of
fan electrical appliance']
Snoopy TRUE FALSE ['Snoopy, a fictional

character from Peanuts
comic strip.', 'Snoopy, a
beagle dog.']

II. Commonality for several classes in Oxford Flowers 102
dataset

Class - Score (Commonality)

pink primrose' - Score: 0.2 (Uncommon)
'canterbury bells' - Score: 0.3 (Uncommon)

'sweet pea' - Score: 0.4 (Moderately Common)

'tiger lily' - Score: 0.4 (Moderately Common)

'bird of paradise' - Score: 0.5 (Moderately Common)
'globe thistle' - Score: 0.3 (Uncommon)
'snapdragon' - Score: 0.4 (Moderately Common)
'king protea' - Score: 0.2 (Uncommon)

'purple coneflower' - Score: 0.4 (Moderately Common)
'red ginger' - Score: 0.3 (Uncommon)

'daffodil' - Score: 0.5 (Moderately Common)

'sunflower' - Score: 0.6 (Common)

II1. CONFIDENCE CALIBRATION

In our methodology, confidence scores are assigned to
each sample through the scaling of the maximum predicted

probability. The scaling factor employed can accommodate
different types of uncertainty estimates. Specifically, we
derive this factor by computing the simple average of
normalized-entropies [5] obtained from final probabilities
and adjusted probabilities, the latter being obtained by
subtracting class-specific confidence thresholds [6]
computed using CLIP predictions as pseudo-labels.

Consequently, probabilities associated with ambiguous
instances are penalised more, causing them to shift towards
the lower end of the confidence range. This approach
facilitates the user in establishing appropriate confidence
thresholds, enabling swift identification and early filtering
out of ambiguous samples. Mathematically, we express
confidence score (confidence) as the product of the
maximum probability and the scaling factor:

confidence = max-proba x scaling_factor

where, the scaling factor is computed as the average of
the entropies from final probabilities and adjusted
probabilities:

scaling factor = average(entropy(final probabilities),
entropy(adjusted_probabilities))

IV. DINOV2 ENSEMBLE

To enhance accuracy, we train a Support Vector
Classification (SVC) model using features from the DINOv2
model and pseudo-labels obtained from CLIP. The training
dataset is refined by utilising confidence scores assigned to
each sample, allowing us to select the top-x% of confident
samples for training. Specifically, we choose the top 60% of
samples from each class for model training.

The final probabilities produced by the trained model are
averaged with the softmax probabilities from CLIP. This
amalgamation mitigates overconfident mispredictions that
may arise when the model is trained with pseudo-labels from
CLIP.

When the training data adequately represents good
samples for each class, prediction accuracy significantly
improves. Conversely, if the training data lacks adequate
good class representation, averaging the probabilities with
those obtained from CLIP addresses these situations,
preventing inflated probabilities for mispredictions.

final probabilities = average(CLIP probabilities +
SVC _DinoV2 probabilities)

Finally, the confidence scores for each sample are
reassigned based on the obtained final probabilities. Our
proposed method exhibits improved accuracy compared to
predictions from CLIP alone, and the associated confidence
scores aid in the improved identification and filtration of
ambiguous samples.

II1. Effect of prompt refinement: Classification accuracy
using different prompt templates.

Dataset Baseline Ours
(An image of a (An image of a
{class_name}) {cleaned_option})
Caltech101 0.826 0.866
Caltech256 0.814 0.828
Food101 0.777 0.804



Flowers102 0.618 0.677

V. RESULTS

To demonstrate the effectiveness of our approach, we
conducted experiments on several publicly available datasets
and show that our approach improves or retains accuracy
compared to CLIP. In all experiments, the ViT-B/32 variant
of CLIP was used. When ensembling with DINOv2, the S/14
variant of the pre-trained DINOvV2 featurizer is used.

V. Effect of confidence calibration and DINOv2
ensembling, compared to zero-shot CLIP only, using the
same prompts

Dataset Zero-shot CLIP CLIP + DINOV2/SVC +
Confidence calibration
OxfordIIITPets 0.85 0.90
Caltech101 0.83 0.86
CIFAR10 0.89 0.95
Flowers102 0.62 0.67
EuroSAT 0.32 0.45

Table III shows the effect of prompt refinement., by
comparing accuracy scores for several datasets using a
baseline text prompt, using the template “An image of a
{class_name}”, against the custom prompt generated through
our refinement, “An image of a {cleaned option}”. See table
I for examples for the ‘cleaned option’ generated for a few
different classes. The accuracy shows a consistent and
significant improvement through the prompt refinement.
Table IV shows the accuracy for a subset of the dataset
containing only the ambiguous classes. These ambiguous
classes are identified during the prompt refinement by an
LLM.

Table IV shows the effect of ensembling (DINOv2
featurizer + SVC) and confidence calibration. The accuracy
improves consistently over the zero-shot CLIP baseline. In
both cases, the prompts used are of the template “An image
of'a {class_name}”.

VI CONCLUSION

Our study introduces essential enhancements to the CLIP
model, addressing limitations in pre-labelling diverse
datasets. Through prompt refinement, confidence calibration,
and a DINOv2 ensemble approach, we augment CLIP's
adaptability and precision. Experimental results demonstrate
consistent accuracy improvements, especially in handling
ambiguous classes. The combined impact of these techniques
signifies a promising step towards achieving robust
multimodal classification. As we continue to refine and
explore these methodologies, our work contributes valuable
insights to the ongoing advancement of multimodal models,
enhancing their utility in diverse real-world applications.
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