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Abstract—CLIP (Contrastive Language-Image Pre-
training) excels in zero-shot image classification across diverse 
domains, making it an ideal candidate for pre-labelling 
unlabelled datasets. This paper introduces three pivotal 
enhancements designed to elevate CLIP-based pre-labeling 
efficacy without the need for labeled data. First, we introduce 
prompt refinement using a large language model (GPT-3.5-
Turbo) to generate more descriptive prompts, significantly 
boosting accuracy on various datasets. Second, we address 
overconfident predictions through confidence calibration, 
achieving improved results without the need for a separate 
labeled validation set. Lastly, we leverage the inductive biases 
of CLIP and DINOv2 through ensembling, demonstrating a 
substantial boost in zero-shot labeling accuracy. Experimental 
results across various datasets consistently demonstrate 
enhanced performance, particularly in handling ambiguous 
classes. This work not only addresses limitations in CLIP but 
also provides valuable insights for advancing multimodal 
models in real-world applications.
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I. INTRODUCTION

This paper introduces an augmented iteration of CLIP 

(Contrastive Language-Image Pre-training), a pioneering 
multimodal model developed by OpenAI [1]. While CLIP 
exhibits commendable zero-shot performance, its efficacy in 
pre-labelling diverse datasets often falls short. Recognising 
this gap, we introduce three targeted techniques to bolster 
CLIP's adaptability and precision: refining input text 
prompts, calibrating confidence scores, and leveraging the 
image-only DINOv2 featurizer [2]. By addressing inherent 
challenges in pre-labelling scenarios, we equip CLIP with a 
nuanced understanding that exceeds its impressive zero-shot 
capabilities, ensuring its proficiency in diverse classification 
tasks.

Each of the three proposed methods separately enhances 
CLIP performance, starting with the nuanced refinement of 
input text prompts. By carefully curating prompts to 
describe classes of interest, CLIP's semantic understanding 
of the classes is significantly improved [3]. Calibrating 
confidence scores tackles differences in how the model 
perceives samples in its latent feature space and the classes 
to be labeled in the present task. The original pre-training 
establishes fixed similarities between classes, but for a 
specific user task, a different perspective may be needed [1].

Furthermore, we introduce an ensemble approach by 
incorporating the image-only DINOv2 featurizer. The varied 

biases from language-image pre-training and image-only 
contrastive training in the two models create diversity in 
predictions, making ensembling beneficial [2]. Through 
comprehensive experimentation and analysis, we showcase 
the collective impact of these enhancements on the CLIP 
model.

Our experiments across various datasets demonstrated 
consistent accuracy boosts. From minor to significant 
improvements, these methods prove pivotal for enhancing 
CLIP in pre-labelling classification datasets, thus setting an 
encouraging tone for our continued exploration.


II. PROMPT REFINEMENT

To enhance the adaptability and accuracy of CLIP for 

pre-labelling diverse datasets, we introduce a novel approach 
to prompt refinement. This technique leverages Language 
Models (LLMs) to curate descriptive prompts for classes, 
addressing nuances in language representation and ambiguity 
inherent in natural language. The refined prompts contribute 
to an improved semantic understanding of classes within the 
CLIP model.


A. Descriptive Prompt Generation

We use LLMs to generate descriptive prompts for each 

class in the dataset. By utilising the inherent language 
understanding capabilities of LLMs, we aim to capture the 
rich semantics associated with each class [4]. This involves 
crafting prompts that not only succinctly describe the class 
but also encapsulate contextual information that aids in 
differentiating between similar classes.


B. Ambiguity Scoring

To further refine the prompt selection process, we utilise 

LLMs to assign ambiguity scores to the generated prompts. 
These scores are determined based on multiple factors:


is_misspelled: Identifying if a prompt contains incorrect 
spellings, ensuring the accuracy of the language used.


is_ambiguous: Evaluating whether a prompt is 
ambiguous or non-ambiguous, particularly when a class 
name has multiple meanings.


is_generic: Assessing the specificity of the prompt, 
flagging prompts that may be too generic and require 
additional specificity.


common_score: Assigning a float value indicating the 
commonality of the prompt phrase, allowing for the selection 
of diverse and representative prompts.




C.  Refined Prompt

Incorporating the above-mentioned scores, the LLM 

produces cleaned options that serve as refined prompts. 
These cleaned options form a curated list providing 
additional context about the input class name and its 
superclass (type of object). The list aims to enrich the 
understanding of the class within the multimodal CLIP 
framework. Multiple options are provided to ensure a 
comprehensive coverage of the class semantics, fostering a 
nuanced understanding that transcends beyond the 
limitations of a single prompt.


By integrating prompt refinement through LLMs, we 
enhance the textual input to CLIP, enabling the model to 
better discern and categorise diverse classes in pre-labelling 
scenarios. This meticulous approach contributes to the 
overall efficacy of CLIP in handling a wide range of 
classification tasks.


Selected example outputs for the “Schooner” class in the 
“Caltech101” dataset:


III. CONFIDENCE CALIBRATION

In our methodology, confidence scores are assigned to 

each sample through the scaling of the maximum predicted 

probability. The scaling factor employed can accommodate 
different types of uncertainty estimates. Specifically, we 
derive this factor by computing the simple average of 
normalized-entropies [5] obtained from final probabilities 
and adjusted probabilities, the latter being obtained by 
subtracting class-specific confidence thresholds [6] 
computed using CLIP predictions as pseudo-labels.


Consequently, probabilities associated with ambiguous 
instances are penalised more, causing them to shift towards 
the lower end of the confidence range. This approach 
facilitates the user in establishing appropriate confidence 
thresholds, enabling swift identification and early filtering 
out of ambiguous samples. Mathematically, we express 
confidence score (confidence) as the product of the 
maximum probability and the scaling factor:


confidence = max-proba × scaling_factor


where, the scaling_factor is computed as the average of 
the entropies from final probabilities and adjusted 
probabilities:


scaling_factor = average(entropy(final_probabilities), 
entropy(adjusted_probabilities))


IV. DINOV2 ENSEMBLE

To enhance accuracy, we train a Support Vector 

Classification (SVC) model using features from the DINOv2 
model and pseudo-labels obtained from CLIP. The training 
dataset is refined by utilising confidence scores assigned to 
each sample, allowing us to select the top-x% of confident 
samples for training. Specifically, we choose the top 60% of 
samples from each class for model training.


The final probabilities produced by the trained model are 
averaged with the softmax probabilities from CLIP. This 
amalgamation mitigates overconfident mispredictions that 
may arise when the model is trained with pseudo-labels from 
CLIP. 


When the training data adequately represents good 
samples for each class, prediction accuracy significantly 
improves. Conversely, if the training data lacks adequate 
good class representation, averaging the probabilities with 
those obtained from CLIP addresses these situations, 
preventing inflated probabilities for mispredictions.


final_probabilities = average(CLIP probabilities + 
SVC_DinoV2 probabilities)


Finally, the confidence scores for each sample are 
reassigned based on the obtained final probabilities. Our 
proposed method exhibits improved accuracy compared to 
predictions from CLIP alone, and the associated confidence 
scores aid in the improved identification and filtration of 
ambiguous samples.


I. Ambiguity, Genericity, and proposed cleaned options for 
a few Caltech101 classes

Class is_ambig
uous

is_gener
ic

cleaned_options

Schooner TRUE FALSE ['Schooner, a type of 
sailing ship.',

  'Schooner, a type of beer 
glass.’]

Ceiling 
fan

FALSE FALSE [‘ceiling fan, a type of 
electrical appliance']

Snoopy TRUE FALSE ['Snoopy, a fictional 
character from Peanuts 
comic strip.',  'Snoopy, a 
beagle dog.']

II. Commonality for several classes in Oxford Flowers 102 
dataset

Class - Score (Commonality)

pink primrose' - Score: 0.2 (Uncommon)


'canterbury bells' - Score: 0.3 (Uncommon)


'sweet pea' - Score: 0.4 (Moderately Common)


'tiger lily' - Score: 0.4 (Moderately Common)


'bird of paradise' - Score: 0.5 (Moderately Common)


'globe thistle' - Score: 0.3 (Uncommon)


'snapdragon' - Score: 0.4 (Moderately Common)


'king protea' - Score: 0.2 (Uncommon)


'purple coneflower' - Score: 0.4 (Moderately Common)


'red ginger' - Score: 0.3 (Uncommon)


'daffodil' - Score: 0.5 (Moderately Common)


'sunflower' - Score: 0.6 (Common)

III. Effect of prompt refinement: Classification accuracy 
using different prompt templates.

Dataset Baseline

(An image of a 
{class_name})

Ours

(An image of a 
{cleaned_option})

Caltech101 0.826 0.866

Caltech256 0.814 0.828

Food101 0.777 0.804



V. RESULTS

To demonstrate the effectiveness of our approach, we 

conducted experiments on several publicly available datasets 
and show that our approach improves or retains accuracy 
compared to CLIP. In all experiments, the ViT-B/32 variant 
of CLIP was used. When ensembling with DINOv2, the S/14 
variant of the pre-trained DINOv2 featurizer is used.


Table III shows the effect of prompt refinement., by 
comparing accuracy scores for several datasets using a 
baseline text prompt, using the template “An image of a 
{class_name}”, against the custom prompt generated through 
our refinement, “An image of a {cleaned_option}”. See table 
I for examples for the ‘cleaned_option’ generated for a few 
different classes. The accuracy shows a consistent and 
significant improvement through the prompt refinement. 
Table IV shows the accuracy for a subset of the dataset 
containing only the ambiguous classes. These ambiguous 
classes are identified during the prompt refinement by an 
LLM. 


Table IV shows the effect of ensembling (DINOv2 
featurizer + SVC) and confidence calibration. The accuracy 
improves consistently over the zero-shot CLIP baseline. In 
both cases, the prompts used are of the template “An image 
of a {class_name}”.


VI. CONCLUSION

Our study introduces essential enhancements to the CLIP 

model, addressing limitations in pre-labelling diverse 
datasets. Through prompt refinement, confidence calibration, 
and a DINOv2 ensemble approach, we augment CLIP's 
adaptability and precision. Experimental results demonstrate 
consistent accuracy improvements, especially in handling 
ambiguous classes. The combined impact of these techniques 
signifies a promising step towards achieving robust 
multimodal classification. As we continue to refine and 
explore these methodologies, our work contributes valuable 
insights to the ongoing advancement of multimodal models, 
enhancing their utility in diverse real-world applications.
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Flowers102 0.618 0.677

IV. Effect of confidence calibration and DINOv2 
ensembling, compared to zero-shot CLIP only, using the 
same prompts

Dataset Zero-shot CLIP
 CLIP + DINOv2/SVC + 
Confidence calibration

OxfordIIITPets 0.85 0.90

Caltech101 0.83 0.86

CIFAR10 0.89 0.95

Flowers102 0.62 0.67

EuroSAT 0.32 0.45
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